# vãrgokal PLUS 

## HOUSE SEWAGE SYSTEM - LOW NOISE

SEWAGE PP/MF PIPES AND FITTINGS FOR INTERNAL INSTALLATIONS

Technology and tradition.


## CATALOGUE 08/2022



INSTALLATION SYSTEMS

## vargokal PLUS



Europe
$\$$


# INSTALLATION SYSTEM 

SEWAGE

## PP/MF PIPES PLUS 35

## PP/MF FITTINGS PLUS

ACCESSORIES PLUS

vargokal PLUS 35 pipes are made out of polypropylene polymer (PP) with the addition of mineral filler (MF) in wide range of types and dimensions which are used for house sewage and water drainage. They are built in inside building construction (scope B) intended for residential and industrial use, and are especially used for sewage waste and rainwater of high and low temperatures as for ventilation of complete drainage system.
They are delivered with integrated socket and built-in seals and are produced in accordance with standard EN 1451-1
vargokal PLUS pipes and fittings are produced with self-extinguishing properties, according to classification B2 (normally combustible material).
Availability of different lengths of pipes by diameter allowes adjustment in every requested project. Polypropylene (PP) is thermoplastic resin, respectively one of the materials which change their physical condition in accordance with heat. Positive properties od polypropylene (PP) are: high mechanical resistance, high fusion point $\left(185^{\circ} \mathrm{C}\right)$, perfect stability of shape and high resistance of chemical compound. There are different kinds of polypropylene (PP) with different characteristics and with different applications, depending on their macromolecular structure. For industrial applications only isostatic polymer is used, because other polymers do not have a wide usage in commercial area.
Installation system vargokal consists of following programs:
vargokal - Single layer pipes and fittings
vargokal 35 - Three-layer pipes
vargokal PLUS - Low noise three-layer pipes and single layer fittings
vargokal ULTRA - Silent single layer pipes and fittings

## System assembly

vargokal PLUS pipes and fittings are assembled by integrated socket with factory-fitted seals. Seals are inserted in a special fillister which ensures waterproof junction, safety and simple assembly.
Dimensions of seals, standards of production, technology and regular control of quality meet European standard HRN EN 681 "Materials requirements for pipe joint seals used in water and drainage aplications".

System advantages


Easy manipulation and storage
Characteristic of products allows easy manipulation and storage.


## Excellent thermal properties

The low thermal conductivity of vargokal PLUS 35 pipes prevents condensation on the outer surface of the pipe.


## No bonding

Because of integrated seal there is no need to use glue in assembly process.


Resistance to hot water discharge
Resistance to high
temperatures, up to $90^{\circ} \mathrm{C}$.


Resistance on mechanical damages
High impact resistance at extremely low temperatures down to $-20^{\circ} \mathrm{C}$.


## Excellent acoustic

 propertiesvargokal PLUS 35
three-layer pipe has excellent acoustic properties due to the middle layer reinforced with filler (PP/MF).


Easy and quick installation
Installation is very quick with „push-fit" type of installation.
Wide range of connecting parts provides the ability of assembly in various situations.


No need to use tools vargokal PLUS
35 pipes and fittings are connected manualy without tools.


## Watertightness

Integrated seal ensure safe and waterproof junction.


The inability of fouling
The smooth inner surface does not retain microorganisms or a deposition.


High resistance to agressive chemicals vargokal PLUS
pipes and fittings have high resistance to wide range of chemicals.

## vargonal PLUS

Product packaging

Until installation vargokal PLUS $\mathbf{3 S}$ pipes are exposed to manipulation at loading and unloading, transport and temporary storage therefore it is necessary to pay attention to the correct way in their handling.

Immediately after the production pipes are placed and packed in original factory packaging (bundle), and pallets of standardized quantity and size. For this purpose, floor bars are used to lay pipes on, in order to prevent pipe contact with inadequate surface. Depending on the diameter and length of pipe two or three bars are used to ensure the stability of the bundle and the ability to manipulate with forklift. Pipes inside the bundles are reinforced with pipe dividers and entire bundle is secured with plastic strip that gives additional strength to the package.

h(b)

Legend:
$w=$ width of bundle $h=$ height of bundle $L=$ lenght of bundle $a=$ number of pipes by width $b=$ number of pipes by height
vargokal PLUS pipes of smaller dimensions and fittings are packed in boxes.


| PACKAGING OF PIPE BUNDLES (PALLETS) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| PIPE DIAMETER <br> DN | PIPE LENGTH (mm) without socket |  |  |  |  |  |
|  | 500 | 1000 | 1500 | 2000 | 3000 | 4000 |
|  | NUMBER OF PIPES IN BUNDLE (pcs) ( $\mathrm{a} \times \mathrm{b}$ ) |  |  |  |  |  |
|  | DIMENSION OF BUNDLE (mm) ( $\mathrm{w} \times \mathrm{h} \times \mathrm{L}$ ) |  |  |  |  |  |
| 32 | $\begin{gathered} 100 \\ (5 \times 20) \end{gathered}$ | $\begin{gathered} 50 \\ (5 \times 10) \end{gathered}$ | $\begin{gathered} 30 \\ (5 \times 6) \end{gathered}$ | $\begin{gathered} 30 \\ (5 \times 6) \end{gathered}$ | $\begin{gathered} 20 \\ (5 \times 4) \end{gathered}$ | - |
|  | $\begin{gathered} 185 \times 785 \\ \times 545 \end{gathered}$ | $\begin{gathered} 185 \times 380 \\ \times 1045 \end{gathered}$ | $\begin{gathered} 210 \times 245 \\ \times 1622 \end{gathered}$ | $\begin{gathered} 210 \times 245 \\ \times 2122 \end{gathered}$ | $\begin{gathered} 210 \times 175 \\ \times 3122 \end{gathered}$ | - |
| 40 | $\begin{gathered} 100 \\ (5 \times 20) \end{gathered}$ | $\begin{gathered} 50 \\ (5 \times 10) \end{gathered}$ | $\begin{gathered} 30 \\ (5 \times 6) \end{gathered}$ | $\begin{gathered} 30 \\ (5 \times 6) \end{gathered}$ | $\begin{gathered} 20 \\ (5 \times 4) \end{gathered}$ | - |
|  | $\begin{gathered} 230 \times 960 \\ 550 \end{gathered}$ | $\begin{gathered} 230 \times 480 \\ \times 1050 \end{gathered}$ | $\begin{gathered} 250 \times 305 \\ \times 1626 \end{gathered}$ | $\begin{gathered} 250 \times 305 \\ \times 2126 \end{gathered}$ | $\begin{gathered} 250 \times 210 \\ \times 3126 \end{gathered}$ | - |
| 50 | $\begin{gathered} 50 \\ (5 \times 10) \end{gathered}$ | $\begin{gathered} 50 \\ (5 \times 10) \end{gathered}$ | $\begin{gathered} 30 \\ (5 \times 6) \end{gathered}$ | $\begin{gathered} 30 \\ (5 \times 6) \end{gathered}$ | $\begin{gathered} 20 \\ (5 \times 4) \end{gathered}$ | - |
|  | $\begin{gathered} 305 \times 1200 \\ \times 630 \end{gathered}$ | $\begin{gathered} 305 \times 590 \\ \times 1130 \end{gathered}$ | $\begin{gathered} 305 \times 350 \\ \times 1630 \end{gathered}$ | $\begin{gathered} 305 \times 350 \\ \times 2130 \end{gathered}$ | $\begin{gathered} 305 \times 245 \\ \times 3130 \end{gathered}$ | - |
| 75 | $\begin{gathered} 50 \\ (5 \times 10) \end{gathered}$ | $\begin{gathered} 40 \\ (5 \times 8) \end{gathered}$ | $\begin{gathered} 30 \\ (5 \times 6) \end{gathered}$ | $\begin{gathered} 30 \\ (5 \times 6) \end{gathered}$ | $\begin{gathered} 20 \\ (5 \times 4) \end{gathered}$ | - |
|  | $\begin{gathered} 435 \times 865 \\ \times 640 \end{gathered}$ | $\begin{gathered} 435 \times 685 \\ \times 1140 \end{gathered}$ | $\begin{gathered} 435 \times 525 \\ \times 1640 \end{gathered}$ | $\begin{gathered} 435 \times 525 \\ \times 2140 \end{gathered}$ | $\begin{gathered} 435 \times 340 \\ \times 3140 \end{gathered}$ | - |
| 90 | $\begin{gathered} 25 \\ (5 \times 5) \end{gathered}$ | $\begin{gathered} 96 \\ (8 \times 12) \end{gathered}$ |
|  | $\begin{gathered} 500 \times 500 \\ \times 648 \end{gathered}$ | $\begin{gathered} 800 \times 1200 \\ \times 1148 \end{gathered}$ | $\begin{gathered} 800 \times 1200 \\ \times 1648 \end{gathered}$ | $\begin{gathered} 800 \times 1200 \\ \times 2148 \end{gathered}$ | $\begin{gathered} 800 \times 1200 \\ \times 3148 \end{gathered}$ | $\begin{gathered} 800 \times 1200 \\ \times 4148 \end{gathered}$ |
| 110 | $\begin{gathered} 25 \\ (5 \times 5) \end{gathered}$ | $\begin{gathered} 81 \\ (9 \times 9) \end{gathered}$ |
|  | $\begin{gathered} 625 \times 620 \\ \times 650 \end{gathered}$ | $\begin{gathered} 1100 \times 1150 \\ \times 1150 \end{gathered}$ | $\begin{gathered} 1100 \times 1150 \\ \times 1650 \end{gathered}$ | $\begin{gathered} 1100 \times 1150 \\ \times 2150 \end{gathered}$ | $\begin{gathered} 1100 \times 1150 \\ \times 3150 \end{gathered}$ | $\begin{gathered} 1100 \times 1150 \\ \times 4150 \end{gathered}$ |
| 125 | $\begin{gathered} 20 \\ (4 \times 5) \end{gathered}$ | $\begin{gathered} 64 \\ (8 \times 8) \end{gathered}$ |
|  | $\begin{gathered} 560 \times 700 \\ \times 662 \end{gathered}$ | $\begin{gathered} 1110 \times 1140 \\ \times 1162 \end{gathered}$ | $\begin{gathered} 1110 \times 1140 \\ \times 1662 \end{gathered}$ | $\begin{gathered} 1110 \times 1140 \\ \times 2162 \end{gathered}$ | $\begin{gathered} 1110 \times 1140 \\ \times 3162 \end{gathered}$ | $\begin{gathered} 1110 \times 1140 \\ \times 4162 \end{gathered}$ |
| 160 | $\begin{gathered} 9 \\ (3 \times 3) \end{gathered}$ | $\begin{gathered} 36 \\ (6 \times 6) \end{gathered}$ |
|  | $\begin{gathered} 540 \times 530 x \\ 688 \end{gathered}$ | $\begin{gathered} 1060 \times 1080 \\ \times 1188 \end{gathered}$ | $\begin{gathered} 1060 \times 1080 \\ \times 1688 \end{gathered}$ | $\begin{gathered} 1060 \times 1080 \\ \times 2188 \end{gathered}$ | $\begin{gathered} 1060 \times 1080 \\ \times 3188 \end{gathered}$ | $\begin{gathered} 1060 \times 1080 \\ \times 4188 \end{gathered}$ |

## vargokal PLUS

## Transportation of products

When loading and unloading of bundles it is necessary to pay attention to the pipe ends in order to avoid the deformation / breakage of the pipe sleeve, damage of the seal or flat end of the pipe. Placing heavy objects over the pipes can cause ovality of pipes which will dissappear on its own when the load is decreased. For better utilization of transport bundles can be stacked in height to full height of loading space (max. 3m) without risk of damage. During transport it is recommended to stack pipes up to four bundles in height, for diameters from $\emptyset 32$ to $\emptyset 75$ or up to two bundles in height for diameters from $\emptyset 110$ to $\emptyset 160$.


## Storage of products

It is recommended to use indoor warehouse or covered space in order to protect pipes from the effects of weathering. It is not recommended to expose pipes (and seals) to sunlight for more than 6 months in order to avoid change of the material properties. In conditions of low ambient temperature ( $0^{\circ} \mathrm{C}$ or lower) all polymeric materials become brittle and less elastic so it is necessary to pay attention to protect pipes from dropping from a height.
If the pipes are on stock, they can be stacked up to four bundles in height, for diameters from $\emptyset 32$ to $\emptyset 75$ or up to two bundles in height for diameters from Ø110 to Ø160.


## vargokal PLUS

## Our own laboratory

In addition to the production process, we also ensured continuous monitoring of the quality control of the production process, starting from the control of incoming raw materials to the quality testing of the finished products. The tests are carried out in our internal laboratory which is equipped with testing machines from well known producers, sufficient to examine all neccesary mechanical and physical characteristic of materials and final products, in accordance with norm requests. Process of production is continuosly supervised as well as the testing of materials and final products in accordance with requests of norm HRN EN 1451-1.

We provide the following tests:

- Testing of melt mass-flow rate of raw material and final products in accordance with norm HRN EN ISO 1133-1
- Testing the density in accordance with norm HRN EN ISO 1183-1
- Testing of dimensions ( geometrical characteristics ) in accordance with norm HRN EN ISO 3126 and HRN EN 1451-1
- Testing of longitudinal reversion ( heat reversion ) in accordance with norm HRN EN 743 and HRN EN ISO 2505
- Testing of resistance to external impact on $0^{\circ} \mathrm{C}$ circumferential method in accordance with norm HRN EN 744
- Testing of watertightness in accordance with norm HRN EN 1053
- Testing of resistance to elevated temperature cycling in accordance with norm HRN EN 1055 and HRN EN ISO 13257.



## Pipe PLUS 35

Low noise three-layer pipe PP / MF

vargokal PLUS 3 S pipes are produced from polypropylene (PP) polymers with the addition of the mineral filler (MF). The primary application of the pipe is drainage of waste water for residential and industrial use.

The pipes are manufactured with integrated connection socket, have compact multi-layered wall and come with a corresponding connection seal. The pipe wall is made of three layers, the outer and inner layer made of pure PP and the middle layer with the addition of mineral filler. The outer layer of the pipe is black RAL 9005, and the inner layer is white RAL 9003.

Wall thickness of vargokal PLUS $\mathbf{3 5}$ pipes is higher than the thickness of vargokal 35 pipes. While discharging media through pipes, vargokal PLUS 3S emits much less noise than vargokal 35 pipe, which means that the noise level of vargokal PLUS $\mathbf{3 5}$ pipe is lower than on vargokal 35 pipes. This is because the thicker middle layer is produced with mineral filler that has the property of good sound absorption, and also provides larger circumferential rigidity of vargokal 35 pipes.
vargokal PLUS 3 S pipes comply with norm HRN EN 1451-1 which specifies the required mechanical and physical properties of pipes and fittings manufactured from PP in the field of drainage and waste water within the building structure.

Pipes are supplied with associated fittings in the appropriate dimensions.

| Outer diameter <br> DN | Wall thickness <br> $\mathbf{s ~ m m}$ | Inner diameter <br> $\mathbf{m m}$ | Pipe weight <br> $\mathbf{k g} / \mathrm{m}$ |
| :---: | :---: | :---: | :---: |
| 32 | $\mathbf{1 , 8}$ | 28,4 | 0,231 |
| 40 | $\mathbf{1 , 8}$ | 36,4 | 0,301 |
| 50 | $\mathbf{2 , 0}$ | 46,0 | 0,400 |
| 75 | $\mathbf{2 , 6}$ | 69,8 | 0,882 |
| 90 | $\mathbf{3 , 1}$ | 83,8 | 1,200 |
| 110 | $\mathbf{3 , 6}$ | 103,2 | 1,769 |
| 125 | $\mathbf{3 , 9}$ | 117,2 | 2,201 |
| 160 | $\mathbf{4 , 9}$ | 150,2 | 3,460 |

## Installation system PLUS

## Acoustic properties

Reducing noise in homes and workplaces has become an essential criteria for better quality of life and working environment. For this reason Vargon began researching and testing sound insulation properties of materials used in vargokal system. Tests on sound insulation properties of vargokal PLUS system were conducted at the Fraunhofer Institute in Stuttgart, the world known laboratory for testing audio performance.
Research results have shown that the system vargokal PLUS fully complies with the applicable standards.

In accordance with the European standard EN 14366, and for testing purposes, installation system vargokal PLUS is used with pipes DN IIO x 3,6.

## Test results:

Test results obtained by measuring the water flow rate of $2 \mathrm{I} /$ s indicate that the installation system vargokal PLUS does not exceed the noise levels higher than $17 \mathrm{~dB}(\mathrm{~A})$.


## Use of sound insulating clamps

By using BISMAT 1000 soundproofing clamps with a reinforced EPDM rubber insert, a noise reduction of up to $50 \%$ was achieved compared to the use of a classic clamp. The special double structure of the clamp enables excellent sound absorption while preventing contact with the wall surface. An additional advantage of this clamp is the simple and quick regulation of the pipe distance from the wall.


## The noise level in the pipeline

## Noise in nature

Noise in the nature is unwished or harmful sound to human health and the environment in outer space caused by human activity including noise emitted by means of transport, road transport, railway transport, air transport, maritime and inland waterway transport as well as the plant and projects for which the special regulations in the field of environmental protection shall obtain a decision on integrated environmental protection requirements or decision on environmental impact on the environment.

## Noise protection

Noise protection in buildings is a very demanding task for architects and builders while planning and constructing. The flow of wastewater through the sewage systems is one of the possible sources of noise in buildings.

Soundproofing of house drainage installation systems has gained in importance due to the high demands of comfort living. The total noise can be significantly reduced by selecting the appropriate piping system. The types and the vibration of pipes depend on various factors such as the weight of pipes, the material and its internal insulation. Pipes produce air noise caused by vibration and vibration noise caused by fixation on installation wall.

Noise reduction is achieved by using:

1. special materials in the manufacture process
2. special clamps with rubber inserts.

Sound levels for different types of drainage pipes:


The table shows the noise level at a flow rate of 2 liters of water per second.

## New solutions for drainage in residential buildings

We are able to offer you the ventilation branch (sovent) vargokal PLUS which offers an ideal solution in tall buildings where the factor of simultaneous use of sanitary devices is high.

The sewage system using the ventilation branch vargokal PLUS guarantees excellent ventilation of the drainage pipes and forks on each floor, limiting pressure fluctuations in the system.
vargokal PLUS ventilation branch system offers significant advantages and money savings thanks to the possibility of building individual drainage pipes (without the need for parallel ventilation) with a diameter of 110 mm with a drainage capacity that is more than double that of a system with primary ventilation.

## An ideal solution for high-rise construction

- One drain pipe - no additional ventilation pipes required
- Increased drainage load compared to conventional systems
- Reducing the flow rate of waste water
- Excellent ventilation of drainage pipes and branches of each floor
- Up to 6 connections on one ventilation fork
- Up to 45 apartments can be connected to the same drainage pipe

The drainage system with ventilation branch vargokal PLUS enables the drainage of larger quantities of liquids than any other waste water drainage system (primary ventilation system, direct or indirect parallel ventilation system, secondary ventilation
 system).

Primary ventilation system Parallel ventilation system
Drainage capacity $40 \%$ higher than waste systems with primary ventilation


System with ventilation branch

Drainage capacity is $120 \%$ higher than waste systems with primary ventilation


Art. 102 / 1 - PKEM
LOW NOISE THREE LAYER PIPE SINGLE SOCKET with seal

| DN | $\stackrel{\mathrm{L}}{\mathrm{~mm}}$ | $\underset{\mathrm{mm}}{\mathbf{s}}$ | $\begin{gathered} \mathrm{L1} \\ \mathrm{~mm} \end{gathered}$ | Code | $\psi$ | $\begin{aligned} & \text { OOO } \\ & \mathrm{OOO} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 32 | 150 | 1,8 | 211 | 19716 | 20 | - |
| 32 | 250 | 1,8 | 311 | 19717 | 20 | - |
| 32 | 500 | 1,8 | 561 | 19718 | - | 100/5 |
| 32 | 750 | 1,8 | 811 | 20138 | - | $50 / 5$ |
| 32 | 1000 | 1,8 | 1061 | 19719 | - | $50 / 5$ |
| 32 | 1500 | 1,8 | 1561 | 19720 | - | $30 / 5$ |
| 32 | 2000 | 1,8 | 2061 | 19721 | - | $30 / 5$ |
| 32 | 3000 | 1,8 | 3061 | 19722 | - | $20 / 5$ |
| 40 | 150 | 1,8 | 213 | 19723 | 20 | - |
| 40 | 250 | 1,8 | 313 | 19724 | 20 | - |
| 40 | 500 | 1,8 | 563 | 19725 | - | 100/5 |
| 40 | 750 | 1,8 | 813 | 20139 | - | $50 / 5$ |
| 40 | 1000 | 1,8 | 1063 | 19726 | - | $50 / 5$ |
| 40 | 1500 | 1,8 | 1563 | 19727 | - | $30 / 5$ |
| 40 | 2000 | 1,8 | 2063 | 19728 | - | $30 / 5$ |
| 40 | 3000 | 1,8 | 3063 | 19729 | - | 20 / 5 |
| 50 | 150 | 2,0 | 215 | 19730 | 20 | - |
| 50 | 250 | 2,0 | 315 | 19367 | 20 | - |
| 50 | 500 | 2,0 | 565 | 19368 | - | $50 / 5$ |
| 50 | 750 | 2,0 | 815 | 20140 | - | $50 / 5$ |
| 50 | 1000 | 2,0 | 1065 | 19362 | - | $50 / 5$ |
| 50 | 1500 | 2,0 | 1565 | 19603 | - | $30 / 5$ |
| 50 | 2000 | 2,0 | 2065 | 19369 | - | $30 / 5$ |
| 50 | 3000 | 2,0 | 3065 | 19370 | - | $20 / 5$ |
| 75 | 150 | 2,6 | 220 | 19731 | 20 | - |
| 75 | 250 | 2,6 | 320 | 19732 | 20 | - |
| 75 | 500 | 2,6 | 570 | 19733 | - | $50 / 5$ |
| 75 | 750 | 2,6 | 820 | 20141 | - | 40 / 5 |
| 75 | 1000 | 2,6 | 1070 | 19734 | - | $40 / 5$ |
| 75 | 1500 | 2,6 | 1570 | 19735 | - | $30 / 5$ |
| 75 | 2000 | 2,6 | 2070 | 19736 | - | $30 / 5$ |
| 75 | 3000 | 2,6 | 3070 | 19737 | - | $20 / 5$ |
| 90 | 150 | 3,1 | 224 | 19738 | 20 | - |
| 90 | 250 | 3,1 | 324 | 19739 | 20 | - |
| 90 | 500 | 3,1 | 574 | 19740 | - | $25 / 5$ |
| 90 | 750 | 3,1 | 824 | 20142 | - | 96/12 |
| 90 | 1000 | 3,1 | 1074 | 19741 | - | 96/12 |
| 90 | 1500 | 3,1 | 1574 | 19742 | - | 96/12 |
| 90 | 2000 | 3,1 | 2074 | 19743 | - | 96/12 |
| 90 | 3000 | 3,1 | 3074 | 19744 | - | 96/12 |


| Art. 102/1-PKEM LOW NOISE THREE LAYER PIPE SINGLE SOCKET with seal |  | DN | $\underset{m m}{\mathbf{L}}$ | $\underset{m m}{\mathbf{s}}$ | $\begin{aligned} & \mathrm{L} 1 \\ & \mathrm{~mm} \end{aligned}$ | Code | $4$ | $\begin{aligned} & \mathrm{OOO} \\ & \mathrm{OOO} \\ & \mathrm{OOO} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\sim$ | $L^{\text {L1 }}$ | 110 | 150 | 3,6 | 225 | 19745 | 20 | - |
|  |  | 110 | 250 | 3,6 | 325 | 19313 | 20 | - |
|  |  | 110 | 500 | 3,6 | 575 | 19314 | - | 25/5 |
|  |  | 110 | 750 | 3,6 | 825 | 20143 | - | 81/9 |
|  |  | 110 | 1000 | 3,6 | 1075 | 19315 | - | 81/9 |
|  |  | 110 | 1500 | 3,6 | 1575 | 19746 | - | 81/9 |
|  |  | 110 | 2000 | 3,6 | 2075 | 19316 | - | 81/9 |
|  |  | 110 | 3000 | 3,6 | 3075 | 19317 | - | 81/9 |
|  |  | 125 | 150 | 3,9 | 231 | 19747 | 10 | - |
|  |  | 125 | 250 | 3,9 | 331 | 19591 | 10 | - |
|  |  | 125 | 500 | 3,9 | 581 | 19592 | - | $20 / 4$ |
|  |  | 125 | 750 | 3,9 | 831 | 20144 | - | $64 / 8 / 1$ |
|  |  | 125 | 1000 | 3,9 | 1081 | 19593 | - | $64 / 8 / 1$ |
|  |  | 125 | 1500 | 3,9 | 1581 | 19594 | - | $64 / 8 / 1$ |
|  |  | 125 | 2000 | 3,9 | 2081 | 19595 | - | $64 / 8 / 1$ |
|  |  | 125 | 3000 | 3,9 | 3081 | 19596 | - | $64 / 8 / 1$ |
|  |  | 160 | 150 | 4,9 | 244 | 19748 | 6 | - |
|  |  | 160 | 250 | 4,9 | 344 | 19597 | 8 | - |
|  |  | 160 | 500 | 4,9 | 594 | 19598 | - | 9/3 |
|  |  | 160 | 750 | 4,9 | 844 | 20145 | - | 36/6/1 |
|  |  | 160 | 1000 | 4,9 | 1094 | 19599 | - | 36/6/1 |
|  |  | 160 | 1500 | 4,9 | 1594 | 19600 | - | 36/6/1 |
|  |  | 160 | 2000 | 4,9 | 2094 | 19601 | - | 36/6/1 |
|  |  | 160 | 3000 | 4,9 | 3094 | 19602 | - | 36/6/1 |


| $\mathbf{3 2}$ | $\mathbf{2 0 0 0}$ | 1,8 | 2122 | 20149 | $30 / \mathbf{5}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{3 2}$ | $\mathbf{3 0 0 0}$ | 1,8 | 3122 | 20150 | $20 / \mathbf{5}$ |
| $\mathbf{4 0}$ | $\mathbf{5 0 0}$ | 1,8 | 626 | 20151 | $100 / \mathbf{5}$ |
| $\mathbf{4 0}$ | $\mathbf{1 0 0 0}$ | 1,8 | 1126 | 20152 | $50 / \mathbf{5}$ |
| $\mathbf{4 0}$ | $\mathbf{1 5 0 0}$ | 1,8 | 1626 | 20153 | $30 / \mathbf{5}$ |
| $\mathbf{4 0}$ | $\mathbf{2 0 0 0}$ | 1,8 | 2126 | 20154 | $30 / \mathbf{5}$ |
| $\mathbf{4 0}$ | $\mathbf{3 0 0 0}$ | 1,8 | 3126 | 20155 | $20 / \mathbf{5}$ |
| $\mathbf{5 0}$ | $\mathbf{5 0 0}$ | 2,0 | 630 | 20156 | $100 / \mathbf{5}$ |
| $\mathbf{5 0}$ | $\mathbf{1 0 0 0}$ | 2,0 | 1130 | 20157 | $50 / \mathbf{5}$ |
| $\mathbf{5 0}$ | $\mathbf{1 5 0 0}$ | 2,0 | 1630 | 20158 | $30 / \mathbf{5}$ |
| $\mathbf{5 0}$ | $\mathbf{2 0 0 0}$ | 2,0 | 2130 | 20159 | $30 / \mathbf{5}$ |
| $\mathbf{5 0}$ | $\mathbf{3 0 0 0}$ | 2,0 | 3130 | 20160 | $20 / \mathbf{5}$ |
| $\mathbf{7 5}$ | $\mathbf{5 0 0}$ | 2,6 | 640 | 20161 | $50 / \mathbf{5}$ |
| $\mathbf{7 5}$ | $\mathbf{1 0 0 0}$ | 2,6 | 1140 | 20162 | $40 / \mathbf{5}$ |
| $\mathbf{7 5}$ | $\mathbf{1 5 0 0}$ | 2,6 | 1640 | 20163 | $30 / \mathbf{5}$ |
| $\mathbf{7 5}$ | $\mathbf{2 0 0 0}$ | 2,6 | 2140 | 20164 | $30 / \mathbf{5}$ |
| $\mathbf{7 5}$ | $\mathbf{3 0 0 0}$ | 2,6 | 3140 | 20165 | $20 / \mathbf{5}$ |
| $\mathbf{9 0}$ | $\mathbf{5 0 0}$ | 3,1 | 648 | 20166 | $\mathbf{2 5}$ |
| $\mathbf{9 0}$ | $\mathbf{1 0 0 0}$ | 3,1 | 1148 | 20167 | $96 / \mathbf{1 2}$ |
| $\mathbf{9 0}$ | $\mathbf{1 5 0 0}$ | 3,1 | 1648 | 20168 | $96 / \mathbf{1 2}$ |
| $\mathbf{9 0}$ | $\mathbf{2 0 0 0}$ | 3,1 | 2148 | 20169 | $96 / \mathbf{1 2}$ |
| $\mathbf{9 0}$ | $\mathbf{3 0 0 0}$ | 3,1 | 3148 | 20170 | $96 / \mathbf{1 2}$ |
| $\mathbf{1 1 0}$ | $\mathbf{5 0 0}$ | 3,6 | 650 | 20171 | $\mathbf{2 5}$ |
| $\mathbf{1 1 0}$ | $\mathbf{1 0 0 0}$ | 3,6 | 1150 | 20172 | $81 / \mathbf{9}$ |
| $\mathbf{1 1 0}$ | $\mathbf{1 5 0 0}$ | 3,6 | 1650 | 20173 | $81 / \mathbf{9}$ |
| $\mathbf{1 1 0}$ | $\mathbf{2 0 0 0}$ | 3,6 | 2150 | 20174 | $81 / \mathbf{9}$ |
| $\mathbf{1 1 0}$ | $\mathbf{3 0 0 0}$ | 3,6 | 3150 | 20175 | $81 / \mathbf{9}$ |
| $\mathbf{1 2 5}$ | $\mathbf{5 0 0}$ | 3,9 | 662 | 20176 | $\mathbf{2 0}$ |
| $\mathbf{1 2 5}$ | $\mathbf{1 0 0 0}$ | 3,9 | 1162 | 20177 | $64 / \mathbf{8}$ |
| $\mathbf{1 2 5}$ | $\mathbf{1 5 0 0}$ | 3,9 | 1662 | 20178 | $64 / \mathbf{8}$ |
| $\mathbf{1 2 5}$ | $\mathbf{2 0 0 0}$ | 3,9 | 2162 | 20179 | $64 / \mathbf{8}$ |
| $\mathbf{1 2 5}$ | $\mathbf{3 0 0 0}$ | 3,9 | 3162 | 20180 | $64 / \mathbf{8}$ |
| $\mathbf{1 6 0}$ | $\mathbf{5 0 0}$ | 4,9 | 688 | 20181 | $\mathbf{9}$ |
| $\mathbf{1 6 0}$ | $\mathbf{1 0 0 0}$ | 4,9 | 1188 | 20182 | $36 / \mathbf{6}$ |
| $\mathbf{1 6 0}$ | $\mathbf{1 5 0 0}$ | 4,9 | 1688 | 20183 | $36 / \mathbf{6}$ |
| $\mathbf{1 6 0}$ | $\mathbf{2 0 0 0}$ | 4,9 | 2188 | 20184 | $36 / \mathbf{6}$ |
| $\mathbf{1 6 0}$ | $\mathbf{3 0 0 0}$ | 4,9 | 3188 | 20185 | $36 / \mathbf{6}$ |


| Art. $105 / 1$ - PKB BEND with seal | DN | $\alpha$ | Code | 4 | Nom |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 32 | $45^{\circ}$ | 19693 | 70 | 6160 |
|  | 32 | $87^{\circ}$ | 19694 | 70 | 6160 |
|  | 40 | $15^{\circ}$ | 19695 | 50 | 4400 |
|  | 40 | $30^{\circ}$ | 19696 | 50 | 4400 |
|  | 40 | $45^{\circ}$ | 19623 | 40 | 3520 |
|  | 40 | $67^{\circ}$ | 19697 | 40 | 3520 |
|  | 40 | $87^{\circ}$ | 19698 | 40 | 3520 |
|  | 50 | $15^{\circ}$ | 19486 | 40 | 1600 |
|  | 50 | $30^{\circ}$ | 19487 | 40 | 1600 |
|  | 50 | $45^{\circ}$ | 19266 | 40 | 1600 |
|  | 50 | $67^{\circ}$ | 19699 | 35 | 1400 |
|  | 50 | $87^{\circ}$ | 19349 | 35 | 1400 |
|  | 75 | $45^{\circ}$ | 19448 | 25 | 600 |
|  | 75 | $87^{\circ}$ | 19341 | 20 | 480 |
|  | 90 | $15^{\circ}$ | - 19967 - | 20 | 480 |
|  | 90 | $30^{\circ}$ | - 19968 - | 20 | 320 |
|  | 90 | $45^{\circ}$ | - 19969 - | 20 | 320 |
|  | 90 | $67^{\circ}$ | - 19970 - | 20 | 320 |
|  | 90 | $87^{\circ}$ | - 19971 - | 20 | 320 |
|  | 110 | $15^{\circ}$ | 19565 | 25 | 300 |
|  | 110 | $30^{\circ}$ | 19269 | 20 | 240 |
|  | 110 | $45^{\circ}$ | 19267 | 25 | 200 |
|  | 110 | $67^{\circ}$ | 19301 | 20 | 160 |
|  | 110 | $87^{\circ}$ | 19444 | 20 | 160 |
|  | 125 | $45^{\circ}$ | 19700 | 15 | 120 |
|  | 125 | $87^{\circ}$ | 19654 | 10 | 120 |
|  | 160 | $45^{\circ}$ | 19529 | 6 | 72 |
|  | 160 | $87^{\circ}$ | 19533 | 4 | 48 |


| Art. 107 / 1 - PKEA BRANCH with seals | DN | DN1 | $\alpha$ | Code | 4 | Nos |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DN- ${ }^{-1}$ | 32 | 32 | $45^{\circ}$ | 19701 | 50 | 2000 |
|  | 32 | 32 | $87^{\circ}$ | - 19302 - | 40 | 1600 |
|  | 40 | 40 | $45^{\circ}$ | 19702 | 25 | 1000 |
|  | 40 | 40 | $87^{\circ}$ | 19703 | 30 | 1200 |
|  | 50 | 50 | $45^{\circ}$ | 19268 | 25 | 600 |
|  | 50 | 50 | $87^{\circ}$ | 19282 | 20 | 800 |
|  | 75 | 75 | $45^{\circ}$ | 19704 | 20 | 240 |
|  | 75 | 75 | $87^{\circ}$ | - 19303 - | 20 | 320 |
|  | 90 | 90 | $45^{\circ}$ | - 19972 - | 10 | 120 |
|  | 90 | 90 | $87^{\circ}$ | - 20133 - | 10 | 120 |
|  | 110 | 110 | $45^{\circ}$ | 19488 | 12 | 96 |
|  | 110 | 110 | $87^{\circ}$ | 19530 | 10 | 120 |
|  | 125 | 125 | $45^{\circ}$ | 19705 | 5 | 60 |
|  | 125 | 125 | $87^{\circ}$ | 19684 | 5 | 60 |
|  | 160 | 160 | $45^{\circ}$ | 19706 | 3 | 24 |
|  | 160 | 160 | $87^{\circ}$ | 19707 | 3 | 36 |



| DN | DN1 | $\alpha$ | Code | N | ntil |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{5 0}$ | $\mathbf{4 0}$ | $45^{\circ}$ | $-19304-$ | $\mathbf{2 0}$ | 600 |
| $\mathbf{5 0}$ | $\mathbf{4 0}$ | $87^{\circ}$ | $-19305-$ | $\mathbf{2 0}$ | 600 |
| $\mathbf{7 5}$ | $\mathbf{5 0}$ | $45^{\circ}$ | 19380 | $\mathbf{2 0}$ | 640 |
| $\mathbf{7 5}$ | $\mathbf{5 0}$ | $87^{\circ}$ | $-19306-$ | $\mathbf{2 0}$ | 320 |
| $\mathbf{9 0}$ | $\mathbf{4 0}$ | $45^{\circ}$ | $-19973-$ | $\mathbf{1 0}$ | 180 |
| $\mathbf{9 0}$ | $\mathbf{5 0}$ | $45^{\circ}$ | $-19974-$ | $\mathbf{1 0}$ | 180 |
| $\mathbf{9 0}$ | $\mathbf{5 0}$ | $87^{\circ}$ | $-19975-$ | $\mathbf{1 0}$ | 180 |
| $\mathbf{1 1 0}$ | $\mathbf{5 0}$ | $45^{\circ}$ | 19270 | $\mathbf{2 0}$ | 160 |
| $\mathbf{1 1 0}$ | $\mathbf{5 0}$ | $87^{\circ}$ | 19290 | $\mathbf{2 0}$ | 160 |
| $\mathbf{1 1 0}$ | $\mathbf{7 5}$ | $45^{\circ}$ | 19682 | $\mathbf{1 5}$ | 120 |
| $\mathbf{1 1 0}$ | $\mathbf{7 5}$ | $87^{\circ}$ | 19512 | $\mathbf{2 0}$ | 160 |
| $\mathbf{1 1 0}$ | $\mathbf{9 0}$ | $45^{\circ}$ | $-20187-$ | $\mathbf{1 0}$ | 120 |
| $\mathbf{1 1 0}$ | $\mathbf{9 0}$ | $87^{\circ}$ | $-20188-$ | $\mathbf{1 0}$ | 120 |
| $\mathbf{1 2 5}$ | $\mathbf{1 1 0}$ | $45^{\circ}$ | 19440 | $\mathbf{8}$ | 64 |
| $\mathbf{1 2 5}$ | $\mathbf{1 1 0}$ | $87^{\circ}$ | 19489 | $\mathbf{8}$ | 96 |
| $\mathbf{1 6 0}$ | $\mathbf{1 1 0}$ | $45^{\circ}$ | 19531 | $\mathbf{3}$ | 36 |
| $\mathbf{1 6 0}$ | $\mathbf{1 1 0}$ | $87^{\circ}$ | 19441 | $\mathbf{4}$ | 48 |
| $\mathbf{1 6 0}$ | $\mathbf{1 2 5}$ | $45^{\circ}$ | 19381 | $\mathbf{3}$ | 36 |
| $\mathbf{1 6 0}$ | $\mathbf{1 2 5}$ | $87^{\circ}$ | 19708 | $\mathbf{4}$ | 48 |


| Art. 112 / - PKDA <br> DOUBLE BRANCH <br> with seals |
| :---: |



| Art. 118 / 1 - PKRE ACCESS PIPE WITH SCREW CAP with seal | DN | Code | 4 | Nos |
| :---: | :---: | :---: | :---: | :---: |
| $\longmapsto$ | 50 | - 19309 - | 20 | 800 |
|  | 75 | - 19310 - | 20 | 320 |
|  | 90 | - 19977 - | 10 | 180 |
|  | 110 | 19712 | 15 | 120 |
|  | 125 | 19713 | 10 | 80 |
|  | 160 | 19532 | 4 | 48 |


| Art. 121 / 1 - PKU SLIP COUPLER with seals | DN | Code | 4 | Will |
| :---: | :---: | :---: | :---: | :---: |
|  | 32 | 20225 | $50 / 10$ | 2000 |
|  | 40 | 19311 | 50/10 | 2000 |
|  | 50 | 19384 | 40 | 1600 |
|  | 75 | 19312 | 20 | 800 |
|  | 90 | - 19978 - | 20 | 180 |
|  | 110 | 19714 | 20 | 240 |
|  | 125 | 19383 | 20 | 160 |
|  | 160 | 19715 | 5 | 60 |


| Art. 125 / 1 - PKM CAP | DN | Code | 4 | Will |
| :---: | :---: | :---: | :---: | :---: |
|  | 32 | 19751 | 250/50 | 10000 |
|  | 40 | 19752 | 200/50 | 8000 |
|  | 50 | 19753 | 100/50 | 4000 |
|  | 75 | 19750 | $50 / 10$ | 2000 |
|  | 90 | - 20134 - | $20 / 5$ | 1200 |
| DN | 110 | 19754 | 40/10 | 960 |
|  | 125 | 19755 | $25 / 5$ | 600 |
|  | 160 | 19756 | 15/5 | 360 |


| Art. 185 / 1 <br> VENTILATION BRANCH - SOVENT WITH CONNECTIONS with seal | DN | DN1 | DN2 | Code | 5 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 110 | 110 | 75 | - 20082 - | 1 |



Art. 198 / 2
LOW NOISE JOINTED PIPE CLAMP Zn
with rubber


- DN -

| Art. 199 / 3 <br> SCREW HANGAR RB-16 $\mathbf{Z n}$ <br> with plug | Code | Dimenzija |  |
| :---: | :---: | :---: | :---: |

Art. 198 / 5
LOW NOISE TWO-PART PIPE CLAMP Zn
"Walraven Bismat 1000"


| DN | $\boldsymbol{\varnothing}$ | Code | 復 |
| :---: | :---: | :---: | :---: |
| $\mathbf{7 0}$ | 75 | $-20194-$ | $5 / \mathbf{1}$ |
| $\mathbf{9 0}$ | 90 | $-20195-$ | $5 / \mathbf{1}$ |
| $\mathbf{1 0 0}$ | 110 | $-20196-$ | $5 / \mathbf{1}$ |
| $\mathbf{1 2 5}$ | 125 | $-20197-$ | $5 / \mathbf{1}$ |
| $\mathbf{1 5 0}$ | 160 | $-20198-$ | $5 / \mathbf{1}$ |

vargokal PLUS


INSTALLATION SYSTEMS

## vargokal <br> HOUSE SEWAGE SYSTEM

## vargokal PLUS <br> HOUSE SEWAGE SYSTEM - LOW NOISE

## vargokal ULTRA

HOUSE SEWAGE SYSTEM - SILENT
Verogokel Sur
HOUSE SEWAGE SYSTEM - SYPHONS

## vargoterm

HOUSE WATER SUPPLY

## vargoplen <br> WATER

## vargoplen

IRRIGATION AND SEWAGE

## vargoplen

## vargokor <br> SEWAGE PIPES

## vargokor

SEWAGE CHAMBERS AND CATCHPITS

## vargodren

DRAINAGE PIPES

## VV|PGOtEcct

CABLE PROTECTION PIPES

## vargoheat

FLOOR HEATING PIPES

Find us on:
(C) $00385(0) 51251800$
(5) $00385(0) 51251801$
© info@vargon.hr

- Kukuljanovo 352, 51227 Kukuljanovo, Croatia

You
() www.vargon.hr

